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Abstract— The Event-Relational Potential (ERP) signals are non-stationary in nature. To extract the informative features from P300 
signals, the wavelet analysis is the best analysis tool. This paper investigates development phases, merits and demerits of various existing 
P300 based Brain Computer Interface (BCI) system. It appraises limitations of wavelet based BCI systems and compares the various 
wavelet methods for P300 signals. Some of the limitations motivated us to propose a novel method for discovering knowledge embedded 
in P300 signals using Self-Organizing Maps. The self-organizing feature utilizes to model the data and produce ‘clusters’ vectors. The 
discovered knowledge can be used to classify an unknown signal into a signal class. This work aims to interpret EEG signals and utilize it 
as a device control signal. 

Index Terms— Brain-Computer Interface (BCI) system, Encephalogram (EEG), Event-Relational Potential (ERP), Knowledge Discovery, 
P300 Signals,Self-organizing maps (SOM), Wavelet.   

——————————      —————————— 

1 INTRODUCTION                                                                     
AST few years, have witnessed worthy research in non-
invasive electroencephalography (EEG) based BCI sys-
tems for assisting unblessed people. The research also in-

cludes multi-task control applications like wearable applica-
tions for able-bodied people [1] [2]. Now days, BCI system 
development is also gaining attention in the media and gam-
ing industry. BCI systems in principle would directly infer the 
intensions, brain signals, of subjects under study to infer and 
perform respective tasks. This involves the discrimination of 
different neuro-physiological signals and mapping of these 
signals to movements or actions [3]. For such applications, the 
P300 signals are widely used in conjunction with brain-
computer interface (BCI) systems [4]. The P300 is an endoge-
nous event related potential (ERP) signal, retrieved from pari-
etal lobe (upper backside of head) of the brain. The occurrence 
of P300 depends on the presentation of stimulus. A typical 
P300 signal is attained by presenting uncommon target stimu-
lus to the subject that is entrenched in sequence of non-target 
stimulus. Therefore, the occurrence of P300 signal is directly 
proportional to the infrequency of target stimulus. The most 
commonly used patterns of stimulus are visual and audio. The 
P300 is a positive ERP signal with a latency of about 300ms. 
The advantage of P300 signal is it occurs suddenly or uninten-
tionally so no training is required. The prominent and erotic 

content based signal leads to an excellent P300 signal. It is cue-
based signal means the subject just need to concentrate on one 
out of several stimuli [4]. This requires the extraction of sever-
al characteristics/ patterns from P300 signals. The wavelet 
transform is the beast analysis tool for non-stationary brain 
signals [5]. This paper explores the various pre-existing P300 
based BCI systems and briefly discusses the wavelet analysis 
for P300 based BCI systems. Discovering unknown patterns in 
an ERP (EEG) signal, i.e. P300 signal is a challenging task. This 
paper discusses the use of unsupervised approach in discov-
ery of knowledge embedded in P300 EEG signals. On provid-
ing unknown patterns of signals the classification can be 
achieved using various methods like Linear Support Vector 
Machine (LSVM), Gaussian Support Vector Machine (RSVM), 
Neural Network (NN), Fisher Linear Discriminant (FLD), and 
Kernel Fisher Discriminant (KFD) [6] [7] [8] [9]. The paper 
emphasis on the use of classifier ensemble to embrace the is-
sue of signal responses variability during classification of EEG 
signals as discussed in [10]. 
The paper is organized as: The thorough study of various ap-
plications of P300 signal based BCI systems in thought recog-
nition has discussed in Section 2. This section also mentions 
the advantages and disadvantages of P300 based BCI systems. 
Section 3 discusses the need of knowledge discovery for P300 
based knowledge discovery system. Section 4 explains a Novel 
Approach for Knowledge Discovery using P300 Signals for 
BCI Systems. Finally, the conclusion is given in Section 5. 
 

2 APPLICATIONS OF P300 BASED BCI SYSTEM 
P300 is a positive peak signal that occurs approximately 300 
ms after a meaningful stimulus. A typical P300 signal is at-
tained by presenting uncommon target stimulus to the subject  
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Table 1: P300 based BCI Systems 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013                                                               1633 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013                                                               1634 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org  

 

 
 
that is entrenched in sequence of non-target stimulus as 
shown in Fig 1 where N1, N2 and P1, P2 are negative and pos-
itive components. Here N1, P2 and N2 proceed the P3 [3]. The 
occurrence of P300 signal can be easily illustrated using the 
oddball concept [3]. Here, the user is asked to observe a ran-
dom sequence of two types of stimuli: one that appears fre-
quently, known as target or oddball stimulus and other is non-
target stimulus or normal stimulus. Several researchers have 
experimented with BCI systems based on the P300 signal. 
Some of the considerable ones are listed in Table 1 below. This 
section discusses the advantages and disadvantages of exist-
ing P300 based BCI systems. The accuracy of these BCI sys-
tems has reported from 84.9 % to 100%. 

 Fig 1. A Typical P300 Wave [3] 
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However, with such 100% accuracy, these BCI systems are 
limited by various factors like the number of channels used, 
the number of feature extractors, tuning of classifiers etc. This 
section concludes that the P300 signal is capable for the appli-
cations like speller device, wheelchair control, environmental 
control, multimedia etc, which are controlled with the help of 
a BCI system. The P300 speller paradigm has been a bench-
mark for P300 BCI systems [11]. This motivates us to develop a 
BCI system based on P300 signals that will remove the limita-
tions of the previous BCI systems. 
 

3 NEED OF KNOWLEDGE DISCOVERY 
The P300 signal pattern can describe by specifying the set of 
time domain features, frequency domain features and time-
frequency domain features. Due to the transient nature of P300 
signal, time-frequency features are suitable [21].  

Table 2: Wavelets for P300 based BCI Systems 

 
To obtain such features the wavelet transform is the best sig-

nal analysis tool.  
 

Table 3: EEG Clustering using SOM 
 

 
The wavelet features that are short-lived in a signal are de-
tected and extracted, using various methods like Daubechies 

4 wavelet, Kalman filtering, Quadratic B-spline etc, to form 
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feature vectors for classification purposes as listed in Table 2.  
Based on the study, the Daubechies 4 wavelet have outper-
form with an accuracy of 97.5 % compared to other tech-
niques. The Daubechies 4 wavelet decomposes the signal at 
different frequency bands, with different temporal resolution 
[22]. This section concludes that the wavelet analysis can effec-
tively used to extract the joint time-frequency P300 features in 
the proposed method. Moreover, the wavelet transform also 
helps in removing the noisy and non-meaningful information 
from ERP signals. Therefore, it is clear that for ERPs particu-
larly P300, wavelet analysis is a successful feature extraction 
method [10]. Based on the features extracted, various data 
mining techniques like classification or clustering are applied. 
These techniques are extremely helpful for larger input space 
and feature vector levels are different from each other [32].  
The supervised approach fails when there is huge amount of 
input data as it is not possible to label all input data. There-
fore, minimum number of training data sets is chosen. This 
makes the tuning of the classifiers difficult due to the need of 
more training sets.  

 
This problem may limit the applications of supervised learn-
ing in EEG data analysis. To overcome this limitation, unsu-
pervised learning like Self-Organizing Maps (SOM), is pre-
ferred, which discovers the meaningful structure in a raw data 
[21]. The [33]-[37] have briefly discussed the Self-Organizing 
Maps (SOM). This paper reports the research work using Self-
Organizing Maps (SOM) that have been used along with 
wavelet transform as feature extraction method for processing 
EEG signals as depicted in Table 3. The authors have selected 
and defined adhoc features and assumed the Clusters or Clas-
ses. The variations of such paradigm are too high. Therefore, 
all are intuitive. The next section proposes a method that dis-
covers the features embedded in P300 (EEG) signals, using an 
unsupervised learning: Self-Organizing Maps (SOM) and 
wavelet transform.  
 

4 METHODOLOGY 
As mentioned, earlier the aim of this paper is to present the 
framework for the discovery of features of P300 signals using 
Self-Organizing Maps (SOM) and wavelet transform. The 
method involves P300 signal processing, feature extraction 
from the processed signals, discovering signal clusters, classi-
fication and interpretation of unknown signals as depicted in 
Fig 2.  
 
The research methodology involves following steps: 

1. P300 Data Sets   
2. Signal Preprocessing   
3. Feature Extraction   
4. Knowledge Discovery using SOM   
5. Classification using Classifier Ensemble  
6. Command Generation 

 
Mostly the 10-20 international system is used to acquire the 
EEG signals. The survey of signal acquisition for BCI systems 

using 10-20 international system have discussed in [38]. The 
international standard datasets are available online from BCI 
Competitions. The collected datasets are pre-processed that 
includes amplification, filtering, digitization etc. As discussed 
the P300 signals are non-stationary and self-generated signals, 
for their better interpretation in time-frequency domain, wave-
let Transform (WT) is a good analysis tool. Then the Self-
Organizing Maps (SOM) is applied to produce the clusters 
from wavelet feature vectors. This step leads to the process of 
discovering new patterns from large data sets. Every detected 
class depicted as a cluster on the map. On providing unknown 
samples the system can learn and train itself. For the classifica-
tion purpose, a variety of classifiers like artificial neural net-
work, Back-propagation Neural Network, Hidden Markov 
Model (HMM), Bayes Network etc have been used [32]. The 
combining classifiers are used to solve the problem of reduc-
ing variance as unstable classifiers can have universally low 
bias and high variance. 
 

 
Fig 2.  Model 
 

There exist various ensemble-learning methods, commonly 
used are Bagging, Boosting, Stacking and Voting. Thus, for 
obtaining a better classification various ensemble-learning 
methods, commonly used are Bagging, Boosting, Stacking and 
Voting can be used. The implementation of development 
phases and testing is under process. These classified signals 
then will map to device (a standard command file) control 
command. 
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5 CONCLUSION 
The novel way of discovering the knowledge embedded in 
P300 signals is to classify an unknown signal into a discovered 
signal class that the said system will interpret into a device 
control signal. The paper investigates various existing P300 
based Brain computer Interface Systems. It also evaluates the 
P300-based BCI systems using wavelet transform as feature 
extraction method. The implementation and testing of this BCI 
system is under progress. The future work focuses to analyze 
execution results. The developed P300 based BCI system will 
assist able-bodied and disabled people. 
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