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Wavelet Transform use for P300 Signal
Clustering by Self-Organizing Map

Mandeep Kaur, P. Ahmed, A.K. Soni, M. Qasim Rafiq

Abstract— The Event-Relational Potential (ERP) signals are non-stationary in nature. To extract the informative features from P300
signals, the wavelet analysis is the best analysis tool. This paper investigates development phases, merits and demerits of various existing
P300 based Brain Computer Interface (BCIl) system. It appraises limitations of wavelet based BCI systems and compares the various
wavelet methods for P300 signals. Some of the limitations motivated us to propose a novel method for discovering knowledge embedded
in P300 signals using Self-Organizing Maps. The self-organizing feature utilizes to model the data and produce ‘clusters’ vectors. The
discovered knowledge can be used to classify an unknown signal into a signal class. This work aims to interpret EEG signals and utilize it

as a device control signal.

Index Terms— Brain-Computer Interface (BCI) system, Encephalogram (EEG), Event-Relational Potential (ERP), Knowledge Discovery,

P300 Signals,Self-organizing maps (SOM), Wavelet.

1 INTRODUCTION

AST few years, have witnessed worthy research in non-

invasive electroencephalography (EEG) based BCI sys-

tems for assisting unblessed people. The research also in-
cludes multi-task control applications like wearable applica-
tions for able-bodied people [1] [2]. Now days, BCI system
development is also gaining attention in the media and gam-
ing industry. BCI systems in principle would directly infer the
intensions, brain signals, of subjects under study to infer and
perform respective tasks. This involves the discrimination of
different neuro-physiological signals and mapping of these
signals to movements or actions [3]. For such applications, the
P300 signals are widely used in conjunction with brain-
computer interface (BCI) systems [4]. The P300 is an endoge-
nous event related potential (ERP) signal, retrieved from pari-
etal lobe (upper backside of head) of the brain. The occurrence
of P300 depends on the presentation of stimulus. A typical
P300 signal is attained by presenting uncommon target stimu-
lus to the subject that is entrenched in sequence of non-target
stimulus. Therefore, the occurrence of P300 signal is directly
proportional to the infrequency of target stimulus. The most
commonly used patterns of stimulus are visual and audio. The
P300 is a positive ERP signal with a latency of about 300ms.
The advantage of P300 signal is it occurs suddenly or uninten-
tionally so no training is required. The prominent and erotic
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content based signal leads to an excellent P300 signal. It is cue-
based signal means the subject just need to concentrate on one
out of several stimuli [4]. This requires the extraction of sever-
al characteristics/ patterns from P300 signals. The wavelet
transform is the beast analysis tool for non-stationary brain
signals [5]. This paper explores the various pre-existing P300
based BCI systems and briefly discusses the wavelet analysis
for P300 based BCI systems. Discovering unknown patterns in
an ERP (EEG) signal, i.e. P300 signal is a challenging task. This
paper discusses the use of unsupervised approach in discov-
ery of knowledge embedded in P300 EEG signals. On provid-
ing unknown patterns of signals the classification can be
achieved using various methods like Linear Support Vector
Machine (LSVM), Gaussian Support Vector Machine (RSVM),
Neural Network (NN), Fisher Linear Discriminant (FLD), and
Kernel Fisher Discriminant (KFD) [6] [7] [8] [9]. The paper
emphasis on the use of classifier ensemble to embrace the is-
sue of signal responses variability during classification of EEG
signals as discussed in [10].

The paper is organized as: The thorough study of various ap-
plications of P300 signal based BCI systems in thought recog-
nition has discussed in Section 2. This section also mentions
the advantages and disadvantages of P300 based BCI systems.
Section 3 discusses the need of knowledge discovery for P300
based knowledge discovery system. Section 4 explains a Novel
Approach for Knowledge Discovery using P300 Signals for
BCI Systems. Finally, the conclusion is given in Section 5.

2 APPLICATIONS OF P300 BASED BCI SYSTEM

P300 is a positive peak signal that occurs approximately 300
ms after a meaningful stimulus. A typical P300 signal is at-
tained by presenting uncommon target stimulus to the subject
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Table 1: P300 based BCI Systems
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However, with such 100% accuracy, these BCI systems are

limited by various factors like the number of channels used,
the number of feature extractors, tuning of classifiers etc. This
section concludes that the P300 signal is capable for the appli-

nal analysis tool.
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Table 3: EEG Clustering using SOM
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To obtain such features the wavelet transform is the best sig- 4 wavelet, Kalman filtering, Quadratic B-spline etc, to form
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feature vectors for classification purposes as listed in Table 2.
Based on the study, the Daubechies 4 wavelet have outper-
form with an accuracy of 97.5 % compared to other tech-
niques. The Daubechies 4 wavelet decomposes the signal at
different frequency bands, with different temporal resolution
[22]. This section concludes that the wavelet analysis can effec-
tively used to extract the joint time-frequency P300 features in
the proposed method. Moreover, the wavelet transform also
helps in removing the noisy and non-meaningful information
from ERP signals. Therefore, it is clear that for ERPs particu-
larly P300, wavelet analysis is a successful feature extraction
method [10]. Based on the features extracted, various data
mining techniques like classification or clustering are applied.
These techniques are extremely helpful for larger input space
and feature vector levels are different from each other [32].
The supervised approach fails when there is huge amount of
input data as it is not possible to label all input data. There-
fore, minimum number of training data sets is chosen. This
makes the tuning of the classifiers difficult due to the need of
more training sets.

This problem may limit the applications of supervised learn-
ing in EEG data analysis. To overcome this limitation, unsu-
pervised learning like Self-Organizing Maps (SOM), is pre-
ferred, which discovers the meaningful structure in a raw data
[21]. The [33]-[37] have briefly discussed the Self-Organizing
Maps (SOM). This paper reports the research work using Self-
Organizing Maps (SOM) that have been used along with
wavelet transform as feature extraction method for processing
EEG signals as depicted in Table 3. The authors have selected
and defined adhoc features and assumed the Clusters or Clas-
ses. The variations of such paradigm are too high. Therefore,
all are intuitive. The next section proposes a method that dis-
covers the features embedded in P300 (EEG) signals, using an
unsupervised learning: Self-Organizing Maps (SOM) and
wavelet transform.

4 METHODOLOGY

As mentioned, earlier the aim of this paper is to present the
framework for the discovery of features of P300 signals using
Self-Organizing Maps (SOM) and wavelet transform. The
method involves P300 signal processing, feature extraction
from the processed signals, discovering signal clusters, classi-
fication and interpretation of unknown signals as depicted in
Fig 2.

The research methodology involves following steps:
1. P300 Data Sets

Signal Preprocessing

Feature Extraction

Knowledge Discovery using SOM

Classification using Classifier Ensemble

Command Generation

ISANSLIN NS

Mostly the 10-20 international system is used to acquire the
EEG signals. The survey of signal acquisition for BCI systems
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using 10-20 international system have discussed in [38]. The
international standard datasets are available online from BCI
Competitions. The collected datasets are pre-processed that
includes amplification, filtering, digitization etc. As discussed
the P300 signals are non-stationary and self-generated signals,
for their better interpretation in time-frequency domain, wave-
let Transform (WT) is a good analysis tool. Then the Self-
Organizing Maps (SOM) is applied to produce the clusters
from wavelet feature vectors. This step leads to the process of
discovering new patterns from large data sets. Every detected
class depicted as a cluster on the map. On providing unknown
samples the system can learn and train itself. For the classifica-
tion purpose, a variety of classifiers like artificial neural net-
work, Back-propagation Neural Network, Hidden Markov
Model (HMM), Bayes Network etc have been used [32]. The
combining classifiers are used to solve the problem of reduc-
ing variance as unstable classifiers can have universally low
bias and high variance.

. .//’ EEG Sgual
‘ i

FEATURE
EXTRACTION
USING WAVELET
TRANSFORM

EEG DATA SIGNAL
SETS PREPROCESSING

fr i

Feature Vector

00 Q Q
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Clusters: k Classes
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KNOWLEDGE DISCOVERY USING

SELF ORGANIZING MAP

CLASSIFICATION USING
CLASSIFIER ENSEMELE

1 ]

Geh G @
. Chbss1 P, ( twsz ) C (hssk

T T T

l Commands
‘ APPLICATION |

Fig 2. Model

There exist various ensemble-learning methods, commonly
used are Bagging, Boosting, Stacking and Voting. Thus, for
obtaining a better classification various ensemble-learning
methods, commonly used are Bagging, Boosting, Stacking and
Voting can be used. The implementation of development
phases and testing is under process. These classified signals
then will map to device (a standard command file) control
command.
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5 CONCLUSION

The novel way of discovering the knowledge embedded in
P300 signals is to classify an unknown signal into a discovered
signal class that the said system will interpret into a device
control signal. The paper investigates various existing P300
based Brain computer Interface Systems. It also evaluates the
P300-based BCI systems using wavelet transform as feature
extraction method. The implementation and testing of this BCI
system is under progress. The future work focuses to analyze
execution results. The developed P300 based BCI system will
assist able-bodied and disabled people.
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